
2.3 Array Descriptors and Block-Cyclic Distribution of the Matrices 
When performing calculations, a routine needs to know which global data can be found in which processor's 

local array. This distribution is passed as an array argument, called the array descriptor vector, and is required by 

each ScaLAPACK routine.  Every distributed matrix A has this integer array associated with it that stores 

information describing exactly how the matrix is distributed across the process grid. This information uniquely 

determines the mapping of the elements of matrix A onto the local memory of each logical processor.  Except for 

the array elements that define the BLACS context and the leading dimension of the local array A that is storing the 

local blocks of matrix A, all elements of the descriptor array are global. So an array descriptor is associated with 

each global array and stores the information required to establish the mapping between each global array entry and 

its corresponding process and memory location. Also, array descriptor vector contain the mechanism by which each 

ScaLAPACK routine determines the distribution of global array elements into local arrays owned by each processor. 

An array descriptor includes: 

 The descriptor type. 
 The BLACS context. 
 The number of rows in the distributed matrix. 
 The number of columns in the distributed matrix. 
 The row block size. 
 The column block size. 
 The process row over which the first row of the matrix is distributed. 
 The process column over which the first column of the matrix is distributed. 
 The leading dimension of the local array storing the local blocks.   

Attention! The leading dimension (LD) in case of column major order is equal to m - the number of rows of 

the matrix (usualy for Fortran). The leading dimension (LD) in case of row major order is equal to n - the number 

of columns of the matrix (usualy for C, C++). 
Array descriptors are provided for the following type of matrices: 

 dense matrices, 
 band and tridiagonal matrices, 
 out-of-core matrices, 

and are differentiated by the DTYPE_ entry in the descriptor. The following values of the DESC_(DTYPE_) are 

valid. 
DESC_(DTYPE_) DESIGNATION 

1 Dense matrices 
501 Narrow band and tridiagonal coefficient  matrices 
502 Narrow band and tridiagonal right-hand-side matrices 
601 Out-of-core matrices 

 
The choice of an appropriate data distribution heavily depends on the characteristics or flow of the computation 

in the algorithm. For dense matrix computations, ScaLAPACK assumes the data to be distributed according to the 

two-dimensional block-cyclic data layout scheme. The block-cyclic data layout has been selected for the dense 

algorithms implemented in ScaLAPACK principally because of its scalability, load balance, and efficient use of 

Level 3 BLAS single processor computation routines (data locality). 
The block-partitioned computation proceeds in consecutive order just like a conventional serial algorithm. This 

essential property of the block cyclic data layout explains why the ScaLAPACK design has been able to reuse the 

numerical and software expertise of the sequential LAPACK library.    Procedure steps of the data distribution 

method are: 

 Divide up the global array into blocks with M_A rows and N_A columns. 
 From now on, think of the global array as composed only of these blocks. 
 Distribute first row of array blocks across the first row of the processor grid in order. If you run out 

processor grid columns cycle back to first column. 
 Repeat for the second row of array blocks, with the second row of the processor grid. 
 Continue for remaining rows of array blocks. 
 If you run out of processor grid rows, cycle back to the first processor row and repeat.   



Example of a block cyclic data distribution 
According to the two-dimensional block cyclic data distribution scheme, an M_by N_ dense matrix is first 

decomposed into MB_ by NB_ blocks starting at its upper left corner. These blocks are then uniformly distributed in 

each dimension of the Process Grid. 
Thus, every process owns a collection of blocks, which are locally and contiguously stored in a two-

dimensional ``column major array. The partitioning of a matrix into blocks and the mapping of these blocks onto a 

Process Grid is illustrated with a global 9x9 matrix A. The first step in this process is to partition the matrix A into 

block. Let us use 2x2 blocks and assume that the 2-D Process Grid is 2x3. 
a11 a12 | a13 a14 | a15 a16 | a17 a18 | a19 
  
a21 a22 | a23 a24 | a25 a26 | a27 a28 | a29           B11  B12  B13  B14  B15 
--------.---------.---------.---------.---- 
a31 a32 | a33 a34 | a35 a36 | a37 a38 | a39 
  
a41 a42 | a43 a44 | a45 a46 | a47 a48 | a49           B21  B22  B23  B24  B25 
--------.---------.---------.---------.---- 
  
a51 a52 | a53 a54 | a55 a56 | a57 a58 | a59    == 
  
a61 a62 | a63 a64 | a65 a66 | a67 a68 | a69           B31  B32  B33  B34  B35 
--------.---------.---------.---------.---- 
a71 a72 | a73 a74 | a75 a76 | a77 a78 | a79 
  
a81 a82 | a83 a84 | a85 a86 | a87 a88 | a89           B41  B42  B43  B44  B45 
--------.---------.---------.---------.---- 
  
a91 a92 | a93 a94 | a95 a96 | a97 a98 | a99           B51  B52  B53  B54  B55 
matrix A is M_ x N_ (9 x 9).   A is partitioned into 2x2 blocks. In the above diagram the Bij are the 2x2 blocks, e.g. 
 B11  ==  a11 a12      B12  ==  a13 a14     ...    B15 == a19 
                a21 a22                    a23 a24                         a29 
Initially, the 2x3 Process Grid is empty and looks like this: 
  
                 0           1       2 
  
  
         .                 .            . 
  
 0       .                 .            . 
  
         .                 .            . 
  
 1       .                 .            . 
  
         .                 .            . 
We identify each process in the Process Grid by two coordinates (row,col). Thus, for the 2x3 Process Grid the 

processes would be: 
  
         0                 1              2 
  
  
 0     (0,0)             (0,1)         (0,2) 
     
  
 1     (1,0)             (1,1)         (1,2)  
  
The distribution process starts by taking the Global Bij in first row and distribute them to the first row of the 

Processor Grid: 
  
   0             1            2 
  
 B11 B14       B12 B15      B13 
 0        .                 .            . 
 1        .                 .            . 



  
Take Global Bij in next row and distribute them to the next row of the Process Grid: (if previous distribution was on 

last row of Process Grid then restart with row 0 of Process Grid ). 
  
          0               1             2 
 0      B11 B14   .      B12 B15       B13    
          .                 .            . 
  
 1      B21 B24          B22 B25       B23 
  
Take Global Bij in next row and distribute them to the first row of the Process Grid: (restart with row 0 of Process 

Grid). 
  
          0                 1             2 
  
       B11 B14           B12 B15        B13 
  
 0     B31 B34           B32 B35        B33 
          .                 .            . 
  
 1     B21 B24           B22 B25        B23 
  
Take Global Bij in next row and distribute them to the next row of the Process Grid: 
         0                 1            2 
  
        B11 B14           B12 B15       B13 
  
 0     B31 B34           B32 B35       B33 
          .                 .            . 
  
 1     B21 B24          B22 B25        B23 
  
       B41 B44           B42 B45       B43 
Take Global Bij in next row and distribute them to the first row of the Process Grid: (restart with row 0 of Process 

Grid). 
  
          0                 1            2 
  
       B11 B14           B12 B15        B13 
  
 0     B31 B34           B32 B35        B33 
  
       B51 B54           B52 B55        B53 
  
  
 1     B21 B24           B22 B25        B23 
  
       B41 B44           B42 B45        B43 

 

The diagram on the next Figures illustrates a 2-D block-cyclic distribution of a 9x9 global array with 2x2 blocks 

over a 2x3 processor grid (The colors represent the 6 different processors) 
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Table “Global View” 

  
Using the procedure steps of the data distribution method are described above we obtain the following local 

distributed matrix. 
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Table “Local (distributed) View” 
The array descriptor DESC_A ( ScaLPACK notation “_A” read as “of the distributed global array A) for 

dense matrices is an integer array of length 9. It is used for the ScaLAPACK routines solving dense linear systems 

and eigenvalue problems. The content of the array descriptor for dense matrices is presented in the following table: 
DESC_A() Symbolic 

Name 
Scope Destination 

1 DTYPE_A global Descriptor type DTYPE_A=1 for dense matrices. 
2 CTXT_A global BLACS context handle, indicating the BLACS process grid over which the 

global matrix A is distributed. The context itself is global, but the handle 

(the integer value) may vary. 
3 M_A global   

Number of rows in the global array A. 
4 N_A global   

Number of columns in the global array A. 



5 MB_A global Number of rows in the global array A used to distribute the rows of this 

array. 
6 NB_A global Number of columns in the global array A used to distribute the columns of 

these array 
7 RSRC_A global Processor grid row which has the first block of A (typically 0) 
8 CSRC_A global Processor grid column which has the first block of A (typically 0) 
9 LLD_A local Total number of rows (Fortran) or columns(C,C++) of the local array that 

stores the blocks of A (Local Leading Dimension). LLD is (obviously) set 

at the declaration of the local array. This value of LLD can be different for 

different processors.  

  
  

  

Table “Array descriptor for dense matrices” 

  
For band and tridiagonal matrices, the content of the array descriptor is presented in the following table. 

DESC_A() Symbolic 
Name 

Scope Destination 

1 DTYPE_A global Descriptor type DTYPE_A=501 for 1xPc process grid for band and 

tridiagonal matrices bloc-column distributed. 
2 CTXT_A global BLACS context handle, indicating the BLACS process grid over which the 

global matrix A is distributed. The context itself is global, but the handle 

(the integer value) may vary. 
3 N_A global   

Number of columns in the global array A. 
4 NB_A global Number of columns in the global array A used to distribute the columns of 

these array 
5 CSRC_A global Processor grid column which has the first block of A (typically 0) 
6 LLD_A local Number of rows of the local array that stores the blocks of A (local leading 

dimension). For the tridiagonal subroutines, this entry is ignored 
7     Unused,  reserved 

Table “Array descriptor for band and tridiagonal matrices” 

  
The ScaLAPACK software library provides routines for solving out-of-core linear systems, in which case the 

matrices are stored on disk. For out-of-core matrices the content of the array descriptors is presented in the 

following table 

  
DESC_A() Symbolic 

Name 
Scope Destination 

1 DTYPE_A global Descriptor type DTYPE_A=601 for an out-of-core matrix. 
2 CTXT_A global BLACS context handle, indicating the BLACS process grid over which the 

global matrix A is distributed. The context itself is global, but the handle 

(the integer value) may vary. 
3 M_A global   

Number of rows in the global array A. 
4 N_A global   

Number of columns in the global array A. 
5 MB_A global Number of rows in the global array A used to distribute the rows of this 

array. 
6 NB_A global Number of columns in the global array A used to distribute the columns of 

these array 
7 RSRC_A global Processor grid row which has the first block of A (typically 0) 
8 CSRC_A global Processor grid column which has the first block of A (typically 0) 



9 LLD_A global number of rows of the local array that stores the blocks of A (local leading 

dimension) 
10 IODEV_A global  I/O unit device number associated with the out-of-core matrix A 
11 SIZE_A local Amount of local in-core memory available for the factorization of A 

  
Table “Array descriptor for out-of-core dense matrices” 
 
Fortunately, you never have to explicitly assign values to each element of DESCA yourself.  ScaLAPACK provides 

the tool routine DESCINIT (DESCriptor INITitalization) that uses its arguments to create the array descriptor vector 

DESC_A. Of course, DESCINIT must be called by each processor with the appropriate local values. So, just need to 

call the DESCINIT routine which will create the descriptor vector from is arguments. The syntax for DESCINIT is: 
  

DESCINIT(DESC,M,N,MB,NB,RSRC,CSRC,ICONTXT,LLD,INFO) 
void descinit_(int*,int*,int*,int*,int*,int*,int*,int*,int*,int*); 
DESC (output) INTEGER 
DESC is the "filled-in" descriptor vector returned by the routine. 
Arguments 2 through 8 are values for elements 2 through 9 of the descriptor vector (slightly 
 different ordering). 
INFO (output) INTEGER 
These argument is the status value returned to indicate if DESCINIT worked correctly. If INFO=0, the routine call 

was successful. IF INFO=-i, the i-th argument had an illegal value. 
  

 By using the descriptor of the matrices, a call to a PBLAS routine is very similar to a call to the corresponding 

BLAS routine. For example: 
  
CALL DGEMM(TRANSA,TRANSB,M,N,K,ALPHA, 
A(IA,JA),LDA, 
B(IB,JB),LDB, 
BETA,C(IC,JC),LDC) 
  
CALL PDGEMM(TRANSA,TRANSB,M,N,K,ALPHA, 
A,IA,JA,DESC_A, 
B,IB,JB,DESC_B, 
 

BETA,C,IC,JC,DESC_C) 
  

DGEMM computes C=BETA´C+ALPHA´op(A)´op(B), where op(A) is either A or its transpose depending on 

TRANSA, op(B) is similar, op(A) is M-by-K, and op(B) is K-by-N. PDGEMM is the same, with the exception of the 

way submatrixes are specified. To pass the submatrix starting at A(IA,JA) to DGEMM, for example, the actual 

argument corresponding to the formal argument A is simply A(IA,JA). PDGEMM, on the other hand, needs to 

understand the global storage scheme of A to extract the correct submatrix, so IA and JA must be passed in 

separately. 
 The ScaLAPACK ensure same Data Distribution Tool Routines by means of which every processor  can 

answer to the following questions: 

 How many rows should be in my local array? 
 How many columns should be in my local array? 
 What global elements should I put in my local array? 

ScaLAPACK function NUMROC(Number of Rows Or Columns) will answer the first two questions and the 

function INDXG2P(Index: global to processor) will answer the third  questions. So the NUMROC utility function 

does the following: 

 Returns the number of rows or columns of a local array containing blocks of a distributed global array; 
 Will show the arguments for computing the local number of rows. Just switch row to column everywhere to 

get the number of local columns; 
 Returned values are dependent on the calling process. 

The syntax for these function are: 
  

INTEGER FUNCTION NUMROC(M_,MB,MYROW,RSRC,NPROW) 



int numroc_(int*, int*, int*, int*, int*); 
 

The arguments mean the following: M_=number of rows (or columns) in the global array;MB=number of rows (or 

columns) in each block; MYROW=row (or column) coordinate of the calling processor; RSRC=row (or column) 

coordinate of the processor containing the first block; NPROW=number of rows (or columns) in the processor grid. 
  
  
 Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension 

p´q. Then LOCr(K) denotes the number of elements of K that a processwould receive if K were distributed over the p 

processes of its process column. So, the values of LOCr() and LOCc() may be determined via a call to the 

ScaLAPACK tool function, NUMROC: LOCr(M)=NUMROC(M,MB_A,MYROW,RSRC_A,NPROW), 

LOCc(N)=NUMROC(N,NB_A,MYCOL,CSRC_A,NPCOL). 

  
 The INDXG2P utility routine can do the following: 

 Given the global indices (i,j) of a certain element of a global array, returns the processor grid coordinates 

(p,q) that element was distributed to; 
  Will show the arguments to INDXG2P in which i is provided to the routine and p is returned. To get q, 

substitute j for i, and column for row. 

The syntax for these function are: 
  

INTEGER FUNCTION INDXG2P(INDXGLOB,NB,IPROC,ISRCPROC,NPROCS) 
int indxg2p_(int*, int*, int*, int*, int*); 
 

Purpose: INDXG2P computes the process coordinate which possesses the entry of a distributed matrix specified by 

a global index INDXGLOB. 
INDXGLOB (global input) INTEGER 
The global index of the element. 
NB (global input) INTEGER 
Block size, size of the blocks the distributed matrix is split into. 
IPROC (local dummy) INTEGER 
Dummy[fictiv,formal] argument in this case in order to unify the calling sequence of the tool-routines. 
ISRCPROC (global input) INTEGER 
The coordinate of the process that possesses the first row/column of the distributed matrix. 
NPROCS (global input) INTEGER 
The total number processes over which the matrix is distributed. 
  
INTEGER FUNCTION INDXL2G(INDXLOC,NB,IPROC,ISRCPROC,NPROCS) 
int indxl2g_(int*, int*, int*, int*, int*); 
 

Purpose INDXL2G computes the global row or column  index of a distributed matrix entry pointed to by the local 

index INDXLOC of the process indicated by IPROC. 
INDXLOC (global input) INTEGER 
The local index of the distributed matrix entry. 
NB (global input) INTEGER 
Block size, size of the blocks the distributed matrix is split into. 
IPROC (local input) INTEGER 
The coordinate of the process whose local array row or column is to be determined. 
ISRCPROC (global input) INTEGER 
The coordinate of the process that possesses the first row/column of the distributed matrix. 
NPROCS (global input) INTEGER 
The total number processes over which the distributed matrix is distributed. 

  
  
Example 1.2 (Acest exemplu ilustreza modalitatile de determinare a acelor elemente ale matricei, care vor 

fi distribuite pe procesoare in baza algoritmului "two-dimensional block-cyclic data layout scheme") 
Following program in C++ illustrates the use of these two utility routines for the 9x9 array distributed onto 

the 2x3 processor grid shown in the Figure “Local (distributed) View” and print the process coordinate that 

contain the diagonal elements of the distributed matrices  . 
  
/* ========== 



In acest program se ilustreaza modalitatile de   determinare a acelor elemente ale matricei, care vor fi distribuite pe 

procesoare    in baza algoritmului "two-dimensional block-cyclic data layout scheme". Maatricea globala nu se 

initializeaza. 
*/ 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <cmath> 
extern "C" { 
// Cblacs declarations 
     void Cblacs_pinfo(int*,int*); 
     void Cblacs_get(int,int,int*); 
     void Cblacs_gridinit(int*,const char*,int,int); 
     void Cblacs_gridinfo(int,int*,int*,int*,int*); 
     void Cblacs_gridexit(int); 
     void Cblacs_exit(int); 
     int numroc_(int*, int*, int*, int*, int*); 
     void Cblacs_barrier(int,const char*); 
     int indxg2p_(int*, int*, int*, int*, int*); 
            } 
int main(int argc, char **argv) 
{ 
int ICTXT,MYID,NPROCS,NPROW,NPCOL; 
int P,Q,MYROW,MYCOL,L,K,N,M,Nb,Mb; 
int iZERO = 0; 
Cblacs_pinfo(&MYID,&NPROCS); 
Cblacs_get(-1, 0, &ICTXT); 
N=9;M=9; 
Nb=2;Mb=2;        //dimensiunea blocului 
NPROW=2; NPCOL=3; // dimensiunea retelei de procese 
Cblacs_gridinit(&ICTXT, "Row-major", NPROW,NPCOL); 
Cblacs_gridinfo(ICTXT,&NPROW,&NPCOL,&MYROW,&MYCOL); 
//find out the size of the local array for proc(0,0) 
if ((MYROW==0)&(MYCOL==0))      
{ 
   printf("============ REZULT OF THE PROGRAM %s \n",argv[0]); 
   printf("The (%d,%d) process owns the %d rows  and 

%d  cols        \n",MYROW,MYCOL,numroc_(&N,&Nb,&MYROW,&iZERO,&NPROW), 
          numroc_(&M,&Mb,&MYCOL,&iZERO,&NPCOL)); 
   printf("== THE GLOBAL MATRIX ARE DISTRIBED: \n"); 
   for (K = 1; K <= N; ++K) 
   {  
   for (L = 1; L <= M; ++L) 
      {  
      P=indxg2p_(&K,&Nb,0,&iZERO,&NPROW); 
      Q=indxg2p_(&L,&Mb,0,&iZERO,&NPCOL); 
      printf("ELEMENT (%d,%d) IS ON PROCES (%d,%d) \n",K,L,P,Q); 
      } 
   } 
} 
Cblacs_gridexit(ICTXT); 
Cblacs_exit(0); 
}      
  

The result of the execution of the program 
  
 [UAS_M31@hpc ScaLAPCK_for_C]$ ./mpiCC_ScL -o Example1.2.exe Example1.2.cpp 
[UAS_M31@hpc ScaLAPCK_for_C]$ /opt/openmpi/bin/mpirun -n 6 -host compute-0-10,compute-0-12 

Example1.2.exe 
============ REZULT OF THE PROGRAM all_tools.exe 
The (0,0) process owns the 5 rows  and 4  cols 
== THE GLOBAL MATRIX ARE DISTRIBED: 
ELEMENT (1,1) IS ON PROCES (0,0) 



ELEMENT (1,2) IS ON PROCES (0,0) 
ELEMENT (1,3) IS ON PROCES (0,1) 
ELEMENT (1,4) IS ON PROCES (0,1) 
ELEMENT (1,5) IS ON PROCES (0,2) 
ELEMENT (1,6) IS ON PROCES (0,2) 
ELEMENT (1,7) IS ON PROCES (0,0) 
ELEMENT (1,8) IS ON PROCES (0,0) 
ELEMENT (1,9) IS ON PROCES (0,1) 
ELEMENT (2,1) IS ON PROCES (0,0) 
ELEMENT (2,2) IS ON PROCES (0,0) 
ELEMENT (2,3) IS ON PROCES (0,1) 
ELEMENT (2,4) IS ON PROCES (0,1) 
ELEMENT (2,5) IS ON PROCES (0,2) 
ELEMENT (2,6) IS ON PROCES (0,2) 
ELEMENT (2,7) IS ON PROCES (0,0) 
ELEMENT (2,8) IS ON PROCES (0,0) 
ELEMENT (2,9) IS ON PROCES (0,1) 
ELEMENT (3,1) IS ON PROCES (1,0) 
ELEMENT (3,2) IS ON PROCES (1,0) 
ELEMENT (3,3) IS ON PROCES (1,1) 
ELEMENT (3,4) IS ON PROCES (1,1) 
ELEMENT (3,5) IS ON PROCES (1,2) 
ELEMENT (3,6) IS ON PROCES (1,2) 
ELEMENT (3,7) IS ON PROCES (1,0) 
ELEMENT (3,8) IS ON PROCES (1,0) 
ELEMENT (3,9) IS ON PROCES (1,1) 
ELEMENT (4,1) IS ON PROCES (1,0) 
ELEMENT (4,2) IS ON PROCES (1,0) 
ELEMENT (4,3) IS ON PROCES (1,1) 
ELEMENT (4,4) IS ON PROCES (1,1) 
ELEMENT (4,5) IS ON PROCES (1,2) 
ELEMENT (4,6) IS ON PROCES (1,2) 
ELEMENT (4,7) IS ON PROCES (1,0) 
ELEMENT (4,8) IS ON PROCES (1,0) 
ELEMENT (4,9) IS ON PROCES (1,1) 
ELEMENT (5,1) IS ON PROCES (0,0) 
ELEMENT (5,2) IS ON PROCES (0,0) 
ELEMENT (5,3) IS ON PROCES (0,1) 
ELEMENT (5,4) IS ON PROCES (0,1) 
ELEMENT (5,5) IS ON PROCES (0,2) 
ELEMENT (5,6) IS ON PROCES (0,2) 
ELEMENT (5,7) IS ON PROCES (0,0) 
ELEMENT (5,8) IS ON PROCES (0,0) 
ELEMENT (5,9) IS ON PROCES (0,1) 
ELEMENT (6,1) IS ON PROCES (0,0) 
ELEMENT (6,2) IS ON PROCES (0,0) 
ELEMENT (6,3) IS ON PROCES (0,1) 
ELEMENT (6,4) IS ON PROCES (0,1) 
ELEMENT (6,5) IS ON PROCES (0,2) 
ELEMENT (6,6) IS ON PROCES (0,2) 
ELEMENT (6,7) IS ON PROCES (0,0) 
ELEMENT (6,8) IS ON PROCES (0,0) 
ELEMENT (6,9) IS ON PROCES (0,1) 
ELEMENT (7,1) IS ON PROCES (1,0) 
ELEMENT (7,2) IS ON PROCES (1,0) 
ELEMENT (7,3) IS ON PROCES (1,1) 
ELEMENT (7,4) IS ON PROCES (1,1) 
ELEMENT (7,5) IS ON PROCES (1,2) 
ELEMENT (7,6) IS ON PROCES (1,2) 
ELEMENT (7,7) IS ON PROCES (1,0) 
ELEMENT (7,8) IS ON PROCES (1,0) 
ELEMENT (7,9) IS ON PROCES (1,1) 
ELEMENT (8,1) IS ON PROCES (1,0) 



ELEMENT (8,2) IS ON PROCES (1,0) 
ELEMENT (8,3) IS ON PROCES (1,1) 
ELEMENT (8,4) IS ON PROCES (1,1) 
ELEMENT (8,5) IS ON PROCES (1,2) 
ELEMENT (8,6) IS ON PROCES (1,2) 
ELEMENT (8,7) IS ON PROCES (1,0) 
ELEMENT (8,8) IS ON PROCES (1,0) 
ELEMENT (8,9) IS ON PROCES (1,1) 
ELEMENT (9,1) IS ON PROCES (0,0) 
ELEMENT (9,2) IS ON PROCES (0,0) 
ELEMENT (9,3) IS ON PROCES (0,1) 
ELEMENT (9,4) IS ON PROCES (0,1) 
ELEMENT (9,5) IS ON PROCES (0,2) 
ELEMENT (9,6) IS ON PROCES (0,2) 
ELEMENT (9,7) IS ON PROCES (0,0) 
ELEMENT (9,8) IS ON PROCES (0,0) 
ELEMENT (9,9) IS ON PROCES (0,1) 

  
Example 1.3 (Acest exemplu ilustreza modalitatile de determinare a elementelor matricei “globale” care 

vor corespunde elementelor matircelor “locale”) 

  
#include <string.h> 
#include <stdlib.h> 
#include <cmath> 
#include "mpi.h" 
extern "C" { 
// Cblacs declarations 
      void Cblacs_pinfo(int*,int*); 
      void Cblacs_get(int,int,int*); 
      void Cblacs_gridinit(int*,const char*,int,int); 
            void Cblacs_gridinfo(int,int*,int*,int*,int*); 
      void Cblacs_gridexit(int); 
      void Cblacs_exit(int); 
            int numroc_(int*, int*, int*, int*, int*); 
      void Cblacs_barrier(int,const char*); 
      int indxl2g_(int*, int*, int*, int*, int*); 
            } 
int main(int argc, char **argv) 
{ 
int myrank_mpi, nprocs_mpi; 
MPI_Init(&argc, &argv); 
MPI_Comm_rank(MPI_COMM_WORLD, &myrank_mpi); 
MPI_Comm_size(MPI_COMM_WORLD, &nprocs_mpi); 
int ictxt, myrow, mycol; 
int info, itemp; 
int ZERO = 0, ONE = 1; 
int iLRow, jLCol, iGRow, jGCol; 
int llda, lldb, lldc; 
int nprow = 2, npcol = 3; 
Cblacs_pinfo(&myrank_mpi, &nprocs_mpi); 
Cblacs_get(-1, 0, &ictxt); 
Cblacs_gridinit(&ictxt, "Row", nprow, npcol); 
Cblacs_gridinfo(ictxt, &nprow, &npcol, &myrow, &mycol); 
int m = 9, n = 9; 
int mb = 2, nb = 2; 
int rsrc = 0, csrc = 0; 
// Determine local dimensions : np-by-nq. 
int np = numroc_(&m, &mb, &myrow, &ZERO, &nprow); 
int nq = numroc_(&n, &nb, &mycol, &ZERO, &npcol); 
if ((myrow==0)&(mycol==0)) 
{ 
printf("The (%d,%d) process owns the %d rows  and %d  cols \n", myrow, mycol, np, nq); 
for (iLRow = 1; iLRow <= np; iLRow++) 



for (jLCol = 1; jLCol <= nq; jLCol++) 
    { 
//int fortidl = iLRow + 1; 
     //int fortjdl = jLCol + 1; 
     iGRow = indxl2g_(&iLRow, &mb, &myrow, &ZERO, &nprow); 
     jGCol = indxl2g_(&jLCol, &nb, &mycol, &ZERO, &npcol); 
printf("For (%d,%d) proc local index (%d,%d) corespond (%d,%d) global index\n", 
        myrow,mycol,iLRow, jLCol, iGRow, jGCol); 
    } 
} 
Cblacs_gridexit(0); 
MPI_Finalize(); 
return 0; 
} 

  
The result of the execution of the program 

 [[UAS_M31@hpc ScaLAPCK_for_C]$ ./mpiCC_ScL -o Example1.3.exe Example1.3.cpp 
[UAS_M31@hpc ScaLAPCK_for_C]$ /opt/openmpi/bin/mpirun -n 6 -host compute-0-0,compute-0-1 

Example1.3.exe 
The (0,0) process owns the 5 rows  and 4  cols 
For (0,0) proc local index (0,0) corespond (0,0) global index 
For (0,0) proc local index (0,1) corespond (0,1) global index 
For (0,0) proc local index (0,2) corespond (0,6) global index 
For (0,0) proc local index (0,3) corespond (0,7) global index 
For (0,0) proc local index (1,0) corespond (1,0) global index 
For (0,0) proc local index (1,1) corespond (1,1) global index 
For (0,0) proc local index (1,2) corespond (1,6) global index 
For (0,0) proc local index (1,3) corespond (1,7) global index 
For (0,0) proc local index (2,0) corespond (4,0) global index 
For (0,0) proc local index (2,1) corespond (4,1) global index 
For (0,0) proc local index (2,2) corespond (4,6) global index 
For (0,0) proc local index (2,3) corespond (4,7) global index 
For (0,0) proc local index (3,0) corespond (5,0) global index 
For (0,0) proc local index (3,1) corespond (5,1) global index 
For (0,0) proc local index (3,2) corespond (5,6) global index 
For (0,0) proc local index (3,3) corespond (5,7) global index 
For (0,0) proc local index (4,0) corespond (8,0) global index 
For (0,0) proc local index (4,1) corespond (8,1) global index 
For (0,0) proc local index (4,2) corespond (8,6) global index 
For (0,0) proc local index (4,3) corespond (8,7) global index 

 

Se poate verifica ca rezultatele corespund  Table “Global View” 
 


