2.3 Array Descriptors and Block-Cyclic Distribution of the Matrices

When performing calculations, a routine needs to know which global data can be found in which processor's
local array. This distribution is passed as an array argument, called the array descriptor vector, and is required by
each ScaLAPACK routine. Every distributed matrix A has this integer array associated with it that stores
information describing exactly how the matrix is distributed across the process grid. This information uniquely
determines the mapping of the elements of matrix A onto the local memory of each logical processor. Except for
the array elements that define the BLACS context and the leading dimension of the local array A that is storing the
local blocks of matrix A, all elements of the descriptor array are global. So an array descriptor is associated with
each global array and stores the information required to establish the mapping between each global array entry and
its corresponding process and memory location. Also, array descriptor vector contain the mechanism by which each
ScaLAPACK routine determines the distribution of global array elements into local arrays owned by each processor.
An array descriptor includes:

e  The descriptor type.

e The BLACS context.

e  The number of rows in the distributed matrix.

e  The number of columns in the distributed matrix.

The row block size.

The column block size.

The process row over which the first row of the matrix is distributed.

The process column over which the first column of the matrix is distributed.
The leading dimension of the local array storing the local blocks.

Attention! The leading dimension (LD) in case of column major order is equal to m - the number of rows of
the matrix (usualy for Fortran). The leading dimension (LD) in case of row major order is equal to n - the number
of columns of the matrix (usualy for C, C++).

Array descriptors are provided for the following type of matrices:

e dense matrices,
e band and tridiagonal matrices,
e out-of-core matrices,

and are differentiated by the DTYPE_ entry in the descriptor. The following values of the DESC_(DTYPE_) are
valid.

DESC_(DTYPE.) DESIGNATION
1 Dense matrices
501 Narrow band and tridiagonal coefficient matrices
502 Narrow band and tridiagonal right-hand-side matrices
601 Out-of-core matrices

The choice of an appropriate data distribution heavily depends on the characteristics or flow of the computation
in the algorithm. For dense matrix computations, ScaLAPACK assumes the data to be distributed according to the
two-dimensional block-cyclic data layout scheme. The block-cyclic data layout has been selected for the dense
algorithms implemented in ScaLAPACK principally because of its scalability, load balance, and efficient use of
Level 3 BLAS single processor computation routines (data locality).

The block-partitioned computation proceeds in consecutive order just like a conventional serial algorithm. This
essential property of the block cyclic data layout explains why the ScaLAPACK design has been able to reuse the
numerical and software expertise of the sequential LAPACK library. Procedure steps of the data distribution
method are:

e Divide up the global array into blocks with M_A rows and N_A columns.

e From now on, think of the global array as composed only of these blocks.

e Distribute first row of array blocks across the first row of the processor grid in order. If you run out
processor grid columns cycle back to first column.
Repeat for the second row of array blocks, with the second row of the processor grid.
Continue for remaining rows of array blocks.

e Ifyou run out of processor grid rows, cycle back to the first processor row and repeat.



Example of a block cyclic data distribution

According to the two-dimensional block cyclic data distribution scheme, an M_by N_ dense matrix is first
decomposed into MB_ by NB_ blocks starting at its upper left corner. These blocks are then uniformly distributed in
each dimension of the Process Grid.

Thus, every process owns a collection of blocks, which are locally and contiguously stored in a two-
dimensional ““column major array. The partitioning of a matrix into blocks and the mapping of these blocks onto a
Process Grid is illustrated with a global 9x9 matrix A. The first step in this process is to partition the matrix A into
block. Let us use 2x2 blocks and assume that the 2-D Process Grid is 2x3.
allal2|al3 ald|al5al6|al7 al8|al9

a2l a22 | a23 a24 | a25 a26 | a27 a28 | a29 B1l B12 B13 B14 B15

a3l a32 |a33 a34 | a35 a36 | a37 a38 | a39

a4l ad2 | a43 a44 | a45 a46 | a47 a48 | a49 B21 B22 B23 B24 B25

abl ab2 | ab3 a54 | ab5 a56 |a57 a58 |ab9 ==

a6l a62 | a63 ab4 | a65 a6 | a67 a68 | a69 B31 B32 B33 B34 B35

arlar2|a73a74|ar5a76 |a77 a78|a79

a8l a82 | a83 a84 | a85 a86 | a87 a88 | a89 B41 B42 B43 B44 B45
a91 a92 | a93 a94 | a95 a96 | a97 a98 | a99 B51 B52 B53 B54 B55
matrix Ais M_x N_ (9 x9). Ais partitioned into 2x2 blocks. In the above diagram the Bj; are the 2x2 blocks, e.qg.
B1l == allal2 B12 == al3al4 .. B15==al9
a2l a22 a23 a24 a29

Initially, the 2x3 Process Grid is empty and looks like this:

0 1 2

We identify each process in the Process Grid by two coordinates (row,col). Thus, for the 2x3 Process Grid the
processes would be:

0 1 2
0 (0,0 0,1) (0,2)
1 (1,0 (1,1) (1,2)

The distribution process starts by taking the Global Bj; in first row and distribute them to the first row of the
Processor Grid:

0 1 2
B11B14 B12B15 B13

0
1



Take Global Bj; in next row and distribute them to the next row of the Process Grid: (if previous distribution was on
last row of Process Grid then restart with row 0 of Process Grid ).

0 1 2
0 BliB14 . Bi12B15 B13
1 B21B24 B22B25 B23

Take Global Bj; in next row and distribute them to the first row of the Process Grid: (restart with row 0 of Process
Grid).

0 1 2
B11 B14 B12 B15 B13

0 B31B34 B32 B35 B33

1 B21B24 B22 B25 B23

Take Global Bj; in next row and distribute them to the next row of the Process Grid:
0 1 2

B11 B14 B12B15 B13

0 B31B34 B32B35 B33

1 B21B24 B22 B25 B23
B41 B44 B42B45 B43
'(g?!(de) .Global Bij in next row and distribute them to the first row of the Process Grid: (restart with row 0 of Process
0 1 2
B11 B14 B12 B15 B13
0 B31B34 B32 B35 B33

B51 B54 B52 B55 B53

1 B21B24 B22 B25 B23
B41 B44 B42 B45 B43

The diagram on the next Figures illustrates a 2-D block-cyclic distribution of a 9x9 global array with 2x2 blocks
over a 2x3 processor grid (The colors represent the 6 different processors)




Table “Global View”

Using the procedure steps of the data distribution method are described above we obtain the following local
distributed matrix.

Table “Local (distributed) View”
The array descriptor DESC A ( ScaLPACK notation “ A” read as “of the distributed global array A) for
dense matrices is an integer array of length 9. It is used for the ScaLAPACK routines solving dense linear systems
and eigenvalue problems. The content of the array descriptor for dense matrices is presented in the following table:

DESC_A() Symbolic | Scope Destination
Name
1 DTYPE_A | global | Descriptor type DTYPE A=1 for dense matrices.
2 CTXT_A global | BLACS context handle, indicating the BLACS process grid over which the

global matrix A is distributed. The context itself is global, but the handle
(the integer value) may vary.

3 M_A global
Number of rows in the global array A.

4 N_A global

Number of columns in the global array A.




5 MB_A global | Number of rows in the global array A used to distribute the rows of this
array.

6 NB_A global | Number of columns in the global array A used to distribute the columns of
these array

7 RSRC_A global | Processor grid row which has the first block of A (typically 0)

8 CSRC_A global | Processor grid column which has the first block of A (typically 0)

9 LLD_A local Total number of rows (Fortran) or columns(C,C++) of the local array that

stores the blocks of A (Local Leading Dimension). LLD is (obviously) set
at the declaration of the local array. This value of LLD can be different for
different processors.

Table “Array descriptor for dense matrices”

For band and tridiagonal matrices, the content of the array descriptor is presented in the following table.

DESC_A() Symbolic | Scope Destination
Name

1 DTYPE_A | global | Descriptor type DTYPE_A=501 for 1xP. process grid for band and
tridiagonal matrices bloc-column distributed.

2 CTXT_A global | BLACS context handle, indicating the BLACS process grid over which the
global matrix A is distributed. The context itself is global, but the handle
(the integer value) may vary.

3 N_A global
Number of columns in the global array A.

4 NB_A global | Number of columns in the global array A used to distribute the columns of
these array

5 CSRC_A global | Processor grid column which has the first block of A (typically 0)

6 LLD_A local Number of rows of the local array that stores the blocks of A (local leading
dimension). For the tridiagonal subroutines, this entry is ignored

7 Unused, reserved

Table “Array descriptor for band and tridiagonal matrices”

The ScaLAPACK software library provides routines for solving out-of-core linear systems, in which case the
matrices are stored on disk. For out-of-core matrices the content of the array descriptors is presented in the

following table
DESC_A() Symbolic | Scope Destination
Name

1 DTYPE_A | global | Descriptor type DTYPE_A=601 for an out-of-core matrix.

2 CTXT_A global | BLACS context handle, indicating the BLACS process grid over which the
global matrix A is distributed. The context itself is global, but the handle
(the integer value) may vary.

3 M_A global
Number of rows in the global array A.

4 N_A global
Number of columns in the global array A.

5 MB_A global | Number of rows in the global array A used to distribute the rows of this
array.

6 NB_A global | Number of columns in the global array A used to distribute the columns of
these array

7 RSRC_A global | Processor grid row which has the first block of A (typically 0)

8 CSRC_A global | Processor grid column which has the first block of A (typically 0)




9 LLD A global | number of rows of the local array that stores the blocks of A (local leading
dimension)

10 IODEV_A | global | 1/0 unit device number associated with the out-of-core matrix A

11 SIZE_A local Amount of local in-core memory available for the factorization of A

Table “Array descriptor for out-of-core dense matrices”

Fortunately, you never have to explicitly assign values to each element of DESCA yourself. ScaLAPACK provides
the tool routine DESCINIT (DESCriptor INITitalization) that uses its arguments to create the array descriptor vector
DESC_A. Of course, DESCINIT must be called by each processor with the appropriate local values. So, just need to
call the DESCINIT routine which will create the descriptor vector from is arguments. The syntax for DESCINIT is:

DESCINIT(DESC,M,N,MB,NB,RSRC,CSRC,ICONTXT,LLD,INFO)

void descinit_(int*,int*,int™,int*,int*,int*,int*,int*,int*,int*);

DESC (output) INTEGER

DESC is the "filled-in" descriptor vector returned by the routine.

Arguments 2 through 8 are values for elements 2 through 9 of the descriptor vector (slightly

different ordering).

INFO (output) INTEGER

These argument is the status value returned to indicate if DESCINIT worked correctly. If INFO=0, the routine call
was successful. IF INFO=-i, the i-th argument had an illegal value.

By using the descriptor of the matrices, a call to a PBLAS routine is very similar to a call to the corresponding
BLAS routine. For example:

CALL DGEMM(TRANSA TRANSB,M,N,K,ALPHA,
A(IAJA),LDA,

B(1B,JB),LDB,

BETA,C(IC,JC),LDC)

CALL PDGEMM(TRANSA, TRANSB,M,N,K,ALPHA,
AIAJADESC_A,
B,1B,JB,DESC_B,

BETA,C,IC,JC,DESC_C)

DGEMM computes C=BETA"C+ALPHA op(A) op(B), where op(A) is either A or its transpose depending on
TRANSA, op(B) is similar, op(A) is M-by-K, and op(B) is K-by-N. PDGEMM is the same, with the exception of the
way submatrixes are specified. To pass the submatrix starting at A(IA,JA) to DGEMM, for example, the actual
argument corresponding to the formal argument A is simply A(IA,JA). PDGEMM, on the other hand, needs to
understand the global storage scheme of A to extract the correct submatrix, so IA and JA must be passed in
separately.

The ScaLAPACK ensure same Data Distribution Tool Routines by means of which every processor can
answer to the following questions:

e How many rows should be in my local array?
e How many columns should be in my local array?
e What global elements should I put in my local array?

ScaLAPACK function NUMROC(Number of Rows Or Columns) will answer the first two questions and the
function INDXG2P(Index: global to processor) will answer the third questions. So the NUMROC utility function
does the following:

e Returns the number of rows or columns of a local array containing blocks of a distributed global array;

e  Will show the arguments for computing the local number of rows. Just switch row to column everywhere to
get the number of local columns;

e Returned values are dependent on the calling process.

The syntax for these function are:

INTEGER FUNCTION NUMROC(M_,MB,MYROW,RSRC,NPROW)



int numroc_(int*, int*, int*, int*, int*);

The arguments mean the following: M_=number of rows (or columns) in the global array;MB=number of rows (or
columns) in each block; MYROW-=row (or column) coordinate of the calling processor; RSRC=row (or column)
coordinate of the processor containing the first block; NPROW=number of rows (or columns) in the processor grid.

Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension
p’q. Then LOC,(K) denotes the number of elements of K that a processwould receive if K were distributed over the p
processes of its process column. So, the values of LOC,() and LOC() may be determined via a call to the
ScaLAPACK  tool  function, NUMROC: LOC(M)=NUMROC(M,MB_A,MYROW,RSRC_A ,NPROW),
LOC.(N)=NUMROC(N,NB_A,MYCOL,CSRC_A,NPCOL).

The INDXG2P utility routine can do the following:

e Given the global indices (i,j) of a certain element of a global array, returns the processor grid coordinates
(p,q) that element was distributed to;

e  Will show the arguments to INDXG2P in which i is provided to the routine and p is returned. To get q,
substitute j for i, and column for row.

The syntax for these function are:

INTEGER FUNCTION INDXG2P(INDXGLOB,NB,IPROC,ISRCPROC,NPROCS)
int indxg2p_(int*, int*, int*, int*, int*);

Purpose: INDXG2P computes the process coordinate which possesses the entry of a distributed matrix specified by
a global index INDXGLOB.

INDXGLOB (global input) INTEGER

The global index of the element.

NB (global input) INTEGER

Block size, size of the blocks the distributed matrix is split into.

IPROC (local dummy) INTEGER

Dummy[fictiv,formal] argument in this case in order to unify the calling sequence of the tool-routines.
ISRCPROC (global input) INTEGER

The coordinate of the process that possesses the first row/column of the distributed matrix.

NPROCS (global input) INTEGER

The total number processes over which the matrix is distributed.

INTEGER FUNCTION INDXL2G(INDXLOC,NB,IPROC,ISRCPROC,NPROCS)
int indxl2g_(int*, int*, int*, int*, int*);

Purpose INDXL2G computes the global row or column index of a distributed matrix entry pointed to by the local
index INDXLOC of the process indicated by IPROC.

INDXLOC (global input) INTEGER

The local index of the distributed matrix entry.

NB (global input) INTEGER

Block size, size of the blocks the distributed matrix is split into.

IPROC (local input) INTEGER

The coordinate of the process whose local array row or column is to be determined.
ISRCPROC (global input) INTEGER

The coordinate of the process that possesses the first row/column of the distributed matrix.
NPROCS (global input) INTEGER

The total number processes over which the distributed matrix is distributed.

Example 1.2 (Acest exemplu ilustreza modalitatile de determinare a acelor elemente ale matricei, care vor
fi distribuite pe procesoare in baza algoritmului "two-dimensional block-cyclic data layout scheme")

Following program in C++ illustrates the use of these two utility routines for the 9x9 array distributed onto
the 2x3 processor grid shown in the Figure “Local (distributed) View” and print the process coordinate that
contain the diagonal elements of the distributed matrices .



In acest program se ilustreaza modalitatile de determinare a acelor elemente ale matricei, care vor fi distribuite pe
procesoare in baza algoritmului "two-dimensional block-cyclic data layout scheme". Maatricea globala nu se
initializeaza.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <cmath>
extern "C" {
/I Cblacs declarations
void Chlacs_pinfo(int*,int*);
void Cblacs_get(int,int,int*);
void Cblacs_gridinit(int*,const char*,int,int);
void Cblacs_gridinfo(int,int*,int*,int*,int*);
void Cblacs_gridexit(int);
void Chblacs_exit(int);
int numroc_(int*, int*, int*, int*, int*);
void Cblacs_barrier(int,const char*);
int indxg2p_(int*, int*, int*, int*, int*);
}
int main(int argc, char **argv)
{
int ICTXT,MYID,NPROCS,NPROW,NPCOL;
int P,Q,MYROW,MYCOL,L,K,N,M,Nb,Mb;
int iZERO = 0;
Cblacs_pinfo(&MYID,&NPROCYS);
Cblacs_get(-1, 0, &ICTXT);
N=9;M=9;
Nb=2;Mb=2; /ldimensiunea blocului
NPROW=2; NPCOL=3; // dimensiunea retelei de procese
Chblacs_gridinit(&ICTXT, "Row-major", NPROW,NPCOL);
Chblacs_gridinfo(ICTXT,&NPROW,&NPCOL,&MYROW,&MY COL);
/[find out the size of the local array for proc(0,0)
if (MYROW==0)&(MYCOL==0))

printf("============ REZULT OF THE PROGRAM %s \n",argv[0]);
printf(""The (%d,%d) process owns the %d rows and
%d cols \n",MYROW,MYCOL,numroc_(&N,&Nb,&MYROW,&IZERO,&NPROW),
numroc_(&M,&Mb,&MYCOL,&iZERO,&NPCOL));
printf("== THE GLOBAL MATRIX ARE DISTRIBED: \n");
for (K=1; K <= N; ++K)

{

for (L=1; L<=M; ++L)
{
P=indxg2p_(&K,&Nb,0,&iZERO,&NPROW);
Q=indxg2p_(&L,&Mb,0,&iZERO,&NPCOL);
printf("ELEMENT (%d,%d) IS ON PROCES (%d,%d) \n",K,L,P,Q);
}

}

}
Chblacs_gridexit(ICTXT);
Chblacs_exit(0);

The result of the execution of the program

[UAS_M31@hpc ScaLAPCK_for_C]$ ./mpiCC_ScL -0 Examplel.2.exe Examplel.2.cpp

[UAS_M31@hpc ScaLAPCK for_C]$ /opt/openmpi/bin/mpirun -n 6 -host compute-0-10,compute-0-12
Examplel.2.exe

============ REZULT OF THE PROGRAM all_tools.exe

The (0,0) process owns the 5 rows and 4 cols

== THE GLOBAL MATRIX ARE DISTRIBED:

ELEMENT (1,1) IS ON PROCES (0,0)



ELEMENT (1,2) IS ON PROCES (0,0)
ELEMENT (1,3) IS ON PROCES (0,1)
ELEMENT (1,4) IS ON PROCES (0,1)
ELEMENT (1,5) IS ON PROCES (0,2)
ELEMENT (1,6) IS ON PROCES (0,2)
ELEMENT (1,7) IS ON PROCES (0,0)
ELEMENT (1,8) IS ON PROCES (0,0)
ELEMENT (1,9) IS ON PROCES (0,1)
ELEMENT (2,1) IS ON PROCES (0,0)
ELEMENT (2,2) IS ON PROCES (0,0)
ELEMENT (2,3) IS ON PROCES (0,1)
ELEMENT (2,4) IS ON PROCES (0,1)
ELEMENT (2,5) IS ON PROCES (0,2)
ELEMENT (2,6) IS ON PROCES (0,2)
ELEMENT (2,7) IS ON PROCES (0,0)
ELEMENT (2,8) IS ON PROCES (0,0)
ELEMENT (2,9) IS ON PROCES (0,1)
ELEMENT (3,1) IS ON PROCES (1,0)
ELEMENT (3,2) IS ON PROCES (1,0)
ELEMENT (3,3) IS ON PROCES (1,1)
ELEMENT (3,4) IS ON PROCES (1,1)
ELEMENT (3,5) IS ON PROCES (1,2)
ELEMENT (3,6) IS ON PROCES (1,2)
ELEMENT (3,7) IS ON PROCES (1,0)
ELEMENT (3,8) IS ON PROCES (1,0)
ELEMENT (3,9) IS ON PROCES (1,1)
ELEMENT (4,1) IS ON PROCES (1,0)
ELEMENT (4,2) IS ON PROCES (1,0)
ELEMENT (4,3) IS ON PROCES (1,1)
ELEMENT (4,4) IS ON PROCES (1,1)
ELEMENT (4,5) IS ON PROCES (1,2)
ELEMENT (4,6) IS ON PROCES (1,2)
ELEMENT (4,7) IS ON PROCES (1,0)
ELEMENT (4,8) IS ON PROCES (1,0)
ELEMENT (4,9) IS ON PROCES (1,1)
ELEMENT (5,1) IS ON PROCES (0,0)
ELEMENT (5,2) IS ON PROCES (0,0)
ELEMENT (5,3) IS ON PROCES (0,1)
ELEMENT (5,4) IS ON PROCES (0,1)
ELEMENT (5,5) IS ON PROCES (0,2)
ELEMENT (5,6) IS ON PROCES (0,2)
ELEMENT (5,7) IS ON PROCES (0,0)
ELEMENT (5,8) IS ON PROCES (0,0)
ELEMENT (5,9) IS ON PROCES (0,1)
ELEMENT (6,1) IS ON PROCES (0,0)
ELEMENT (6,2) IS ON PROCES (0,0)
ELEMENT (6,3) IS ON PROCES (0,1)
ELEMENT (6,4) IS ON PROCES (0,1)
ELEMENT (6,5) IS ON PROCES (0,2)
ELEMENT (6,6) IS ON PROCES (0,2)
ELEMENT (6,7) IS ON PROCES (0,0)
ELEMENT (6,8) IS ON PROCES (0,0)
ELEMENT (6,9) IS ON PROCES (0,1)
ELEMENT (7,1) IS ON PROCES (1,0)
ELEMENT (7,2) IS ON PROCES (1,0)
ELEMENT (7,3) IS ON PROCES (1,1)
ELEMENT (7,4) IS ON PROCES (1,1)
ELEMENT (7,5) IS ON PROCES (1,2)
ELEMENT (7,6) IS ON PROCES (1,2)
ELEMENT (7,7) IS ON PROCES (1,0)
ELEMENT (7,8) IS ON PROCES (1,0)
ELEMENT (7,9) IS ON PROCES (1,1)
ELEMENT (8,1) IS ON PROCES (1,0)



ELEMENT (8,2) IS ON PROCES (1,0)
ELEMENT (8,3) IS ON PROCES (1,1)
ELEMENT (8,4) IS ON PROCES (1,1)
ELEMENT (8,5) IS ON PROCES (1,2)
ELEMENT (8,6) IS ON PROCES (1,2)
ELEMENT (8,7) IS ON PROCES (1,0)
ELEMENT (8,8) IS ON PROCES (1,0)
ELEMENT (8,9) IS ON PROCES (1,1)
ELEMENT (9,1) IS ON PROCES (0,0)
ELEMENT (9,2) IS ON PROCES (0,0)
ELEMENT (9,3) IS ON PROCES (0,1)
ELEMENT (9,4) IS ON PROCES (0,1)
ELEMENT (9,5) IS ON PROCES (0,2)
ELEMENT (9,6) IS ON PROCES (0,2)
ELEMENT (9,7) IS ON PROCES (0,0)
ELEMENT (9,8) IS ON PROCES (0,0)
ELEMENT (9,9) IS ON PROCES (0,1)

Example 1.3 (Acest exemplu ilustreza modalitatile de determinare a elementelor matricei “globale” care

vor corespunde elementelor matircelor

#include <string.h>
#include <stdlib.h>
#include <cmath>
#include "mpi.h"
extern "C" {
/I Cblacs declarations
void Cblacs_pinfo(int*,int*);
void Cblacs_get(int,int,int*);
void Cblacs_gridinit(int*,const char*,int,int);
void Cblacs_gridinfo(int,int*,int*,int*,int*);
void Cblacs_gridexit(int);
void Cblacs_exit(int);
int numroc_(int*, int*, int*, int*, int*);
void Cblacs_barrier(int,const char*);
int indxl2g_(int*, int*, int*, int*, int*);
}
int main(int argc, char **argv)
{
int myrank_mpi, nprocs_mpi;
MPI_Init(&argc, &argv);
MP1_Comm_rank(MPI_COMM_WORLD, &myrank_mpi);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs_mpi);
int ictxt, myrow, mycol;
int info, itemp;
int ZERO =0, ONE = 1;
int iLRow, jLCol, iGRow, jGCaol;
int llda, lldb, lldc;
int nprow = 2, npcol = 3;
Cblacs_pinfo(&myrank_mpi, &nprocs_mpi);
Cblacs_get(-1, 0, &ictxt);
Cblacs_gridinit(&ictxt, "Row", nprow, npcol);
Cblacs_gridinfo(ictxt, &nprow, &npcol, &myrow, &mycol);
intm=9,n=09;
intmb=2,nb=2;
int rsrc = 0, csrc = 0;
/I Determine local dimensions : np-by-ng.
int np = numroc_(&m, &mb, &myrow, &ZERO, &nprow);
int nq = numroc_(&n, &nb, &mycol, &ZERO, &npcol);
if ((myrow==0)&(mycol==0))
{

printf("The (%d,%d) process owns the %d rows and %d cols \n", myrow, mycol, np, nq);

for (iLRow = 1; iLRow <= np; iLRow++)

“locale”)



for (jLCol = 1; jLCol <= ng; jLCol++)

{
/fint fortidl = iLRow + 1;
[lint fortjdl = jLCol + 1;
iGRow = indxl2g_(&iLRow, &mb, &myrow, &ZERO, &nprow);
jGCol = indxI2g_(&jLCol, &nb, &mycol, &ZERO, &npcol);
printf(*For (%d,%d) proc local index (%d,%d) corespond (%d,%d) global index\n",
myrow,mycol,iLRow, jLCol, iGRow, jGCol);
}

b
Cblacs_gridexit(0);
MPI_Finalize();
return O;

b

The result of the execution of the program

[[UAS_M31@hpc ScaLAPCK for_C]$ ./mpiCC_ScL -0 Examplel.3.exe Examplel.3.cpp

[UAS M31@hpc ScaLAPCK for C]$ /opt/openmpi/bin/mpirun  -n 6 -host compute-0-0,compute-0-1

Examplel.3.exe
The (0,0) process owns the 5 rows and 4 cols
For (0,0) proc local index (0,0) corespond (0,0) global index
For (0,0) proc local index (0,1) corespond (0,1) global index
For (0,0) proc local index (0,2) corespond (0,6) global index
For (0,0) proc local index (0,3) corespond (0,7) global index
For (0,0) proc local index (1,0) corespond (1,0) global index
For (0,0) proc local index (1,1) corespond (1,1) global index
For (0,0) proc local index (1,2) corespond (1,6) global index
For (0,0) proc local index (1,3) corespond (1,7) global index
For (0,0) proc local index (2,0) corespond (4,0) global index
For (0,0) proc local index (2,1) corespond (4,1) global index
For (0,0) proc local index (2,2) corespond (4,6) global index
For (0,0) proc local index (2,3) corespond (4,7) global index
For (0,0) proc local index (3,0) corespond (5,0) global index
For (0,0) proc local index (3,1) corespond (5,1) global index
For (0,0) proc local index (3,2) corespond (5,6) global index
For (0,0) proc local index (3,3) corespond (5,7) global index
For (0,0) proc local index (4,0) corespond (8,0) global index
For (0,0) proc local index (4,1) corespond (8,1) global index
For (0,0) proc local index (4,2) corespond (8,6) global index
For (0,0) proc local index (4,3) corespond (8,7) global index

Se poate verifica ca rezultatele corespund Table “Global View”



