
2.5 The Basic BLACS communication routines
The BLACS (Basic Linear Algebra Communication Subprograms) are used as the communication layer for the

ScaLAPACK project, which involves implementing the LAPACK library on distributed memory Multiple

Instruction Stream Multiple Data Stream (MIMD) machines. In this paragraph we will describe the basic routines of

the BLACS library.
 In the message passing there is three levels of blocking: non-blocking, locally-blocking, and globally-blocking.

These levels are briefly previewed below

 Non-blocking communication: the return from the communication routine implies only that the

message request has been posted. It is then the user's responsibility to probe and thus determine when the

operation has completed.
 Locally-blocking communication: may be applied only to send operations, not receives. The return from

the send implies that the buffer is available for re-use. It is further specified that the send will complete

regardless of whether the corresponding receive is posted.
 Globally-blocking communication: the return from the operation implies that the buffer is available for

re-use. The operation may not complete unless the complement of the operation is called (e.g., a send may

not complete if the corresponding receive is not posted).

The naming conventions for each of the four BLACS routine classifications (point to point communication,

broadcast, combine and support) are presented below. Points to point, broadcast and combine are all typed

routines, i.e., there is a separate routine for each data type

.
! The names of the point to point and broadcast communication routines follow the template vXXYY2D, where

the letter in the v position indicates the data type being sent, XX is replaced to indicate the shape of the matrix, and

the YY positions are used to indicate the type of communication to perform. This is shown in Table 4.

v

MEANING

I Integer data is to be communicated
S Single precision real data is to be communicated.
D Double precision real data is to be communicated
C Single precision complex data is to be communicated
Z Double precision complex data is to be communicated

XX

MEANING

GE The data to be communicated is stored in a general rectangular matrix
TR The data to be communicated is stored in a trapezoidal matrix.

YY

MEANING

SD Send. One process sends to another
RV Receive. One process receives from another
BS Broadcast/send. A process begins the broadcast of data within a scope.
BR Broadcast/recv. A process receives and participates in the broadcast of data within a scope

Table 4 “Values and meanings of the communication routines' name positions”

 ! The general form of the names for combines routines is vGZZZ2D, where v is the same as shown in Table 4.

The position ZZZ indicates what type of operation should be performed when sending the data. The operations

presently supported are shown on Table 5.

ZZZ

MEANING
AMX Entries of result matrix will have the value of the greatest absolute value found in that position
AMN Entries of result matrix will have the value of the smallest absolute value found in that position
SUM Entries of result matrix will have the summation of that position.

Table 5. “Values and meanings of combine routines' name positions”

The support routines serve many diverse functions, and thus they do not have a great degree of

standardization. All official BLACS support routines (i.e., those that are guaranteed by the standard to exist) have

the form BLACS_<name>.

2.5.1 BLACS Point to point communication routines

Point to point communication requires two complementary operations. The send operation produces a message,

which is then consumed by the receive operation. The BLACS send is defined to be locally-blocking, and the

receive is globally-blocking. In addition, the BLACS specify that point to point messages between two given

processes will be strictly ordered. Therefore, if process 0 sends three messages (label them A, B, and C) to process

1, process 1 must receive A before it can receive B, and message C can be received only after both A and B. It

should be noted, however, that messages from different processes are not ordered. Therefore, if processes 0; : : :; 3

send messages A; : : :;D, respectively, to process 4, process 4 may receive these messages in any order that is

convenient.

 The syntaxes of the Point to Point Sends routines are the following:

vGESD2D(ICONTXT,M,N,A,LDA,RDEST,CDEST)
void Cdgesd2d(int, int, int, double*, int, int, int) ;

vTRSD2D(ICONTXT,UPLO,DIAG,M,N,A,LDA,RDEST,CDEST)
void Cdtrsd2d(int,char*,char*,int,int,double*,int,int,int)

ICONTXT (input) INTEGER

The BLACS context handle.

UPLO (input) CHARACTER*1

Indicates whether the matrix is upper (UPLO='U') or lower (UPLO='L') trapezoidal.

DIAG (input) CHARACTER*1

Indicates whether the diagonal of the matrix is unit diagonal (DIAG='U'), and thus

need not be communicated, or otherwise (DIAG='N').

M (input) INTEGER

The number of matrix rows to be sent.

N (input) INTEGER

The number of matrix columns to be sent.

A (input) TYPE array of dimension (LDA,N)

A pointer to the beginning of the (sub)array to be sent.
LDA (input) INTEGER
The leading dimension of the matrix A, i.e., the distance between two successive elements in a matrix row or

column.
RDEST (input) INTEGER
Process row coordinate of the destination process.
CDEST (input) INTEGER
Process column coordinate of the destination process.

The syntaxes of the Point to Point Receives routines are the following:

vGERV2D(ICONTXT,M,N,A,LDA,RSRC,CSRC)
void Cdgerv2d(int,int,int,double*,int,int,int);

vTRRV2D(ICONTXT,UPLO,DIAG,M,N,A,LDA,RSRC,CSRC)
void Cdtrrv2d(int,char*,char*,int,int,double*,int,int,int)
ICONTXT (input) INTEGER
The BLACS context handle.
UPLO (input) CHARACTER*1
Indicates whether the matrix is upper (UPLO='U') or lower (UPLO='L') trapezoidal.
DIAG (input) CHARACTER*1
Indicates whether the diagonal of the matrix is unit diagonal (DIAG='U'), and thus need not be

communicated, or otherwise (DIAG='N').
M (input) INTEGER
The number of matrix rows to be received.
N (input) INTEGER
The number of matrix columns to be received.
A (output) TYPE array (LDA,N)
A pointer to the beginning of the (sub)array to be received.
LDA (input) INTEGER
The leading dimension of the matrix A, i.e., the distance between two successive elements in a matrix row.
RSRC (input) INTEGER
Process row coordinate of the source of the message.
CSRC (input) INTEGER
Process column coordinate of the source of the message.

Example 2.1 (Acest exemplu ilustrezamodalitatile de distribuire a submatricelor pe procese in baza

algoritmului "two-dimensional block-cyclic data layout scheme" folosind functiile BLACS)

#include <mpi.h>
 #include <iostream>
 #include <iomanip>
 #include <string>
 #include <fstream>
 #include <sstream>
 using namespace std;
 extern "C" {
 /* Cblacs declarations */
 void Cblacs_pinfo(int*, int*);
 void Cblacs_get(int, int, int*);
 void Cblacs_gridinit(int*, const char*, int, int);
 void Cblacs_pcoord(int, int, int*, int*);
 void Cblacs_gridexit(int);
 void Cblacs_barrier(int, const char*);
 void Cdgerv2d(int, int, int, double*, int, int, int);
 void Cdgesd2d(int, int, int, double*, int, int, int);
 int numroc_(int*, int*, int*, int*, int*);
 }
 int main(int argc, char **argv)
 {
// Initializarea
 int mpirank,namelen;
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 MPI_Init(&argc, &argv);
 MPI_Get_processor_name(processor_name,&namelen);
 MPI_Comm_rank(MPI_COMM_WORLD, &mpirank);
 bool mpiroot = (mpirank == 0);
 /* Helping vars */
 int iZERO = 0;

 if (argc < 6) {
 if (mpiroot)
 cerr << "Usage: matrixTest matrixfile N M Nb Mb" << endl;
 MPI_Finalize();
 return 1;
 }
 int N, M, Nb, Mb;
 double *A_glob = NULL, *A_glob2 = NULL, *A_loc = NULL;
// Citirea datelor initiale de procesul root
 /* Parse command line arguments */
 if (mpiroot)
 {
 /* Read command line arguments */
 stringstream stream;
 stream << argv[2] << " " << argv[3] << " " << argv[4] << " " << argv[5];
 stream >> N >> M >> Nb >> Mb;
 /* Reserve space and read matrix (with transposition!) */
 A_glob = new double[N*M];
 A_glob2 = new double[N*M];
 string fname(argv[1]);
 ifstream file(fname.c_str());
 for (int r = 0; r < N; ++r)
 {
 for (int c = 0; c < M; ++c) {
 file >> *(A_glob + N*c + r);
 }
 }
 /* Print matrix */
 cout << "Matrix A:\n";
 for (int r = 0; r < N; ++r) {
 for (int c = 0; c < M; ++c) {
 cout << setw(3) << *(A_glob + N*c + r) << " ";
 }
 cout << "\n";
 }
 cout << endl;
 }
// BLACS initializare (se creaza o retea de 2x3 procese)
 /* Begin Cblas context */
 /* We assume that we have 6 processes and place them in a 2-by-3 grid */
 int ctxt, myid, myrow, mycol, numproc;
 int procrows = 2, proccols = 3;
 Cblacs_pinfo(&myid, &numproc);
 Cblacs_get(0, 0, &ctxt);
 Cblacs_gridinit(&ctxt, "Row-major", procrows, proccols);
 Cblacs_pcoord(ctxt, myid, &myrow, &mycol);
 /* Print grid pattern */
 if (myid == 0)
 cout << "Processes grid pattern:" << endl;
 for (int r = 0; r < procrows; ++r)
 {
 for (int c = 0; c < proccols; ++c)
 {
 Cblacs_barrier(ctxt, "All");
 if (myrow == r && mycol == c)
 {
printf("At grid position (%d,%d) is processor %d on the node ""%s"" \n",myrow,mycol,myid,

processor_name);
 }
 }
 Cblacs_barrier(ctxt, "All");
 }
// Sharing the input data

 /* Broadcast of the matrix dimensions */
 int dimensions[4];
 if (mpiroot)
 {
 dimensions[0] = N;
 dimensions[1] = M;
 dimensions[2] = Nb;
 dimensions[3] = Mb;
 }
 MPI_Bcast(dimensions, 4, MPI_INT, 0, MPI_COMM_WORLD);
 N = dimensions[0];
 M = dimensions[1];
 Nb = dimensions[2];
 Mb = dimensions[3];
 /* Reserve space for local matrices */
 // Number of rows and cols owned by the current process
 int nrows = numroc_(&N, &Nb, &myrow, &iZERO, &procrows);
 int ncols = numroc_(&M, &Mb, &mycol, &iZERO, &proccols);
printf("The process (%d,%d) owns the %d rows and %d cols \n",myrow,mycol,nrows,ncols);
 for (int id = 0; id < numproc; ++id)
 {
 Cblacs_barrier(ctxt, "All");
 }
 A_loc = new double[nrows*ncols];
 for (int i = 0; i < nrows*ncols; ++i) *(A_loc+i)=0.;
// Scattering the matrix
 /* Scatter matrix */
/* De fapt aici si este programat algoritmul two-dimensional block-cyclic data layout scheme" pentru

distribuirea matricelor!!
*/
 int sendr = 0, sendc = 0, recvr = 0, recvc = 0;
 for (int r = 0; r < N; r += Nb, sendr=(sendr+1)%procrows)
 {
 sendc = 0;
 // Number of rows to be sent
 // Is this the last row block?
 int nr = Nb;
 if (N-r < Nb)
 nr = N-r;
 for (int c = 0; c < M; c += Mb, sendc=(sendc+1)%proccols)
 {
 // Number of cols to be sent
 // Is this the last col block?
 int nc = Mb;
 if (M-c < Mb)
 nc = M-c;
 if (mpiroot)
 {
 // Send a nr-by-nc submatrix to process (sendr, sendc)
 Cdgesd2d(ctxt, nr, nc, A_glob+N*c+r, N, sendr, sendc);
 }
 if (myrow == sendr && mycol == sendc)
 {
 // Receive the same data
 // The leading dimension of the local matrix is nrows!
 Cdgerv2d(ctxt, nr, nc, A_loc+nrows*recvc+recvr, nrows, 0, 0);
 recvc = (recvc+nc)%ncols;
 }
 }
 if (myrow == sendr)
 recvr = (recvr+nr)%nrows;
 }
 /* Print local matrices */

 for (int id = 0; id < numproc; ++id) {
 if (id == myid) {
 cout << "A_loc on node " << myid << endl;
 for (int r = 0; r < nrows; ++r) {
 for (int c = 0; c < ncols; ++c)
 cout << setw(3) << *(A_loc+nrows*c+r) << " ";
 cout << endl;
 }
 cout << endl;
 }
 Cblacs_barrier(ctxt, "All");
 }
// Gathering the matrix
 /* Gather matrix */
 sendr = 0;
 for (int r = 0; r < N; r += Nb, sendr=(sendr+1)%procrows) {
 sendc = 0;
 // Number of rows to be sent
 // Is this the last row block?
 int nr = Nb;
 if (N-r < Nb)
 nr = N-r;
 for (int c = 0; c < M; c += Mb, sendc=(sendc+1)%proccols) {
 // Number of cols to be sent
 // Is this the last col block?
 int nc = Mb;
 if (M-c < Mb)
 nc = M-c;
 if (myrow == sendr && mycol == sendc) {
 // Send a nr-by-nc submatrix to process (sendr, sendc)
 Cdgesd2d(ctxt, nr, nc, A_loc+nrows*recvc+recvr, nrows, 0, 0);
 recvc = (recvc+nc)%ncols;
 }
 if (mpiroot) {
 // Receive the same data
 // The leading dimension of the local matrix is nrows!
 Cdgerv2d(ctxt, nr, nc, A_glob2+N*c+r, N, sendr, sendc);
 }
 }
 if (myrow == sendr)
 recvr = (recvr+nr)%nrows;
 }
 /* Print test matrix */
 if (mpiroot) {
 cout << "Matrix A test:\n";
 for (int r = 0; r < N; ++r) {
 for (int c = 0; c < M; ++c) {
 cout << setw(3) << *(A_glob2+N*c+r) << " ";
 }
 cout << endl;
 }
 }
 //Cleaning
 /* Release resources */
 delete[] A_glob;
 delete[] A_glob2;
 delete[] A_loc;
 Cblacs_gridexit(ctxt);
 MPI_Finalize();
 }

The result of the execution of the program\

[UAS_M31@hpc ScaLAPCK_for_C]$./mpiCC_ScL Example2.1.cpp-o Example2.1.exe

[UAS_M31@hpc ScaLAPCK_for_C]$ /opt/openmpi/bin/mpirun -n 6 -host compute-0-10,compute-0-12

Example2.1.exe Matrix1.dat 9 9 2 2

Matrix A:
 0 -7 -7 0 -6 5 6 7 1
 -6 -4 1 -2 -9 9 8 7 2
 -1 7 10 -3 1 -7 -7 -4 3
 2 4 -4 3 -9 -1 0 1 4
 -6 -2 7 4 -4 -9 -3 10 5
 -3 -2 -1 5 -2 1 -10 -3 6
 -7 6 0 -4 5 7 -8 3 7
 4 8 -3 -8 -3 -10 -8 -8 8
 1 2 3 4 5 6 7 8 9
Processes grid pattern:
At grid position (0,0) is processor 0 on the node compute-0-10.local
At grid position (0,1) is processor 1 on the node compute-0-12.local
At grid position (0,2) is processor 2 on the node compute-0-10.local
At grid position (1,0) is processor 3 on the node compute-0-12.local
At grid position (1,1) is processor 4 on the node compute-0-10.local
At grid position (1,2) is processor 5 on the node compute-0-12.local
The process (0,2) owns the 5 rows and 2 cols
The process (1,1) owns the 4 rows and 3 cols
The process (0,0) owns the 5 rows and 4 cols
The process (0,1) owns the 5 rows and 3 cols
The process (1,2) owns the 4 rows and 2 cols
The process (1,0) owns the 4 rows and 4 cols

A_loc on node 0
 0 -7 6 7
 -6 -4 8 7
 -6 -2 -3 10
 -3 -2 -10 -3
 1 2 7 8

A_loc on node 1
 -7 0 1
 1 -2 2
 7 4 5
 -1 5 6
 3 4 9

A_loc on node 2
 -6 5
 -9 9
 -4 -9
 -2 1
 5 6

A_loc on node 3
 -1 7 -7 -4
 2 4 0 1
 -7 6 -8 3
 4 8 -8 -8

A_loc on node 4
 10 -3 3
 -4 3 4
 0 -4 7
 -3 -8 8

A_loc on node 5

 1 -7
 -9 -1
 5 7
 -3 -10

Matrix A test:
 0 -7 -7 0 -6 5 6 7 1
 -6 -4 1 -2 -9 9 8 7 2
 -1 7 10 -3 1 -7 -7 -4 3
 2 4 -4 3 -9 -1 0 1 4
 -6 -2 7 4 -4 -9 -3 10 5
 -3 -2 -1 5 -2 1 -10 -3 6
 -7 6 0 -4 5 7 -8 3 7
 4 8 -3 -8 -3 -10 -8 -8 8
 1 2 3 4 5 6 7 8 9
[Hancu_B_S@hpc Pentru_Masterat]$

